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On the Osculatory Rational Interpolation Problem 

By Luc Wuytack 

Abstract. The problem of the existence and construction of a table of osculating rational 

functi, ns rj m for 1, m > 0 is considered. First, a survey is given of some results from 

the th -ory of osculatory rational interpolation of order Si - 1 at points xi for i > 0. 

Using these results, we prove the existence of continued fractions of the form 

Co + c1 .(x - 
yO) + * * * + Ck (X - 

yO) . . . (x Yk-1) 

Ck + 1(X -YO) . . (X Yk) Ck+ 2 (XYk+1 ) 
+ 

F - 1 1 

Ck+3 (x -Yk+2) 
+ F - 

with the Yk suitably selected from among the xi, whose convergents form the elements 

rk,O, rk+1,0, rk+l,1 rk+2,1.... of the table. The properties of these continued frac- 

tions make it possible to derive an algorithm for constructing their coefficients Ci for 

i > 0. This algorithm is a generalization of the qd-algorithm. 

1. Introduction. Let X be a set of distinct points xi and si be a positive integer 
for i > 0. Let f be a real function, whose derivatives f (k) for k = ,1, ..., si 
are given in each of the points xi. The class of polynomials of degree at most n will be 
denoted by Pn for every n > 0. 

Let l and m be nonnegative integers such that 1 + m = S2/- s +? t - and 1 < 

t < s+ 1 . The class of (ordinary) rational functions r = p/q, with p E PI, q E Pm and 
p/q irreducible, will be denoted by R(l, m). The problem of osculatory rational interpo- 
lation of order (1, m) consists in finding an element r in R(l, m) whose derivatives satisfy 
the following relations: 

r(k)(xi) = f=(k) fork=O, 1,..., s1 -1and i = O, 1,...,j, 
(1) 

r(k(jl = ij( for k = O, 1, . ,t-1 

In order to answer the question about the existence and uniqueness of a solution for this 
problem, we also consider the problem of finding elements p E P1 and q E Pm satisfying 

p(k)(xi) = (f q)(k)(Xi) for k = 0, 1,..., si- I and i = O, 1,...,j, 
(2) 

p(k)(xi+ 1) = (f q)(k)(x1+,) for k = 0, 1,. . ,t- 1. 

Let p(x) = ai xi and q(x) = SI = bx * ; then (2) can be considered as a system 
of l + m + 1 linear homogeneous equations in the l + m + 2 unknowns ao, a, ..., 
a, bo ... , bm. Consequently, this system has always at least one nontrivial solution. 
Let p1, q1 and p2, q2 be two different solutions of (2) and define r1 and r2 as follows: 
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ri = p1/q, and r2 = p2/q2- It is not hard to prove that r, and r2 are equivalent, or 

pi * q2 = P2 * q. - 

Let p, q be a solution of (2); then r = p/q may not be an element of R(l, m) 
since p/q might be reducible. Let po/qo be the irreducible form of p/q. If qo 

o=0 d x with d1 = 0 and di = ? for i= 0, 1, . .., j-1, thenwe assume that 

po/qo is normalized in such a way that d1 = 1. The rational function rl m in R(l, m) 
defined by rl m(x) = po(x)/q0(x) for every x with qo(x) = 0, is called the (1, m)-oscu- 
lant of f. The exact degree of p0 and qo will be denoted by 1' and m' respectively. 

In the next section, some results on the existence and uniqueness of a solution to 
the system (1) are given. A necessary and sufficient condition for the existence of such 
a solution is proved, and it is shown that there is at most one rational function in 
R(l, m) satisfying (1). 

In Section 3, sequences of osculating rational functions of different degree are 
considered. The existence of continued fractions, whose convergents form the elements 
of these sequences, is shown. 

Algorithms for computing sequences of osculating rational functions are considered 
in Section 4. A new algorithm is derived, based on the properties of osculating con- 
tinued fractions. It is shown in Section 5 that this algorithm is a generalization of the 
qd-algorithm for Pade approximation. 

The basic ideas used in this paper are similar to those used in [6] and [7] for the 
case of ordinary rational interpolation. 

2. Existence and Uniqueness of a Solution in Osculatory Rational Interpolation. 
Since the rational functions associated with two solutions of (2) are equivalent, they 
have the same irreducible form. Therefore the definition of (1, m)-osculant implies the 
following result. 

LEMMA 1. Let 1 and m be nonnegative integers; then there exists a unique (1, m)- 
osculant of f. 

Consider the (1, m)-osculant rl m = Po/qo of f. Using a simple example we now 
show that p0 and qo do not always satisfy Eqs. (2). 

Example 1. Let x0 = 0, x =1, s0 = 2,s =1 and f() = f(l) = f (0)=1. 
Consider the problem of finding elements p, q E P1 satisfying (2) or 

p(xo) = fiO() * q(xo), p'(xo) = fJ(l) * q(xo) + f'0O) * q'(xo), p(x) = f(O) q(x1). 

The elements p and q defined by p(x) = q(x) = x for all x satisfy these equations. 
Consider p0 = qo = 1; then the (1, 1)-osculant of f is defined by r1 1 = po/qo. It is, 
however, clear that p0 and qo do not form a solution of the above equations. 

Using the (1, m)-osculant rl m = po/qo of f it is possible to construct a solution 
of (2) very easily by multiplying p0 and qo with certain powers of (x - x1) for some 
j > 0. To do this more explicitly, we introduce the following notations. Let the points 

Yo, Y1 , y2 ... be defined in the following way 

Yi = x0 for i = 0, 1, ...,s0 - 1 and 
(3) j-1 

Ys+i I with for i = 0, 1, s . withs=E and j01. 
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The next lemma can now be proved by applying a method similar to the one used in the 
proof of Lemma 2 in [7]. 

LEMMA 2. If rl m = polqo is the (1, m)-osculant of f, then there exist N points 

{Z1z2, * ... ZN} in {yoyl, * yi+m}, with 0 6NSmin{l -1', m - m}, such 
that p = (x- Z1) . .. (x - ZN)*P0 and q = (x - zl) . (x - ZN) q0 satisfy Eqs (2). 

In order to apply Lemma 2 to the situation given in Example 1, we take N = 1 
and z1 = x0. Since r l=Pol/qo with po = qo=1, we have 1' = m' = 0 and 
min(l - 1', m - m') = 1. The elements po and qO do not satisfy Eqs. (2), but it is 
clear that p = (x - xo) * po and q = (x - xo) - qo form a solution of (2). 

The following important relationship between the systems (1) and (2) was proved 
by H. E. Salzer in [3, p. 487]. 

LEMMA 3. If q(xi) ? 0, then the system 

(p/q)(k)(xi) = f (k)(xi) fork =0,1,... 

is equivalent to the system 

(p)(k)(xi) = (f- q)(k)(Xi) for k = 0, 1,..., si - 1. 

In the remaining part of this paper, we say that an element r = p/q from R(, m) 
is satisfying (2) if p and q satisfy (2). It is now possible to give a necessary and suffi- 
cient condition for the existence of a solution for (1). 

THEOREM 1. There exists a rational function r in R(l, m) satisfying (1) if and 
only if the (1, m)-osculant of f satisfies (2). 

Proof Let r = p/q be a solution of (1) then q(xi) # O for i = 0,1, . . ,j+ 1. 
Using Lemma 3 we find that Eqs. (2) hold. If r is an element of R(l, m), then p/q is 
irreducible. Since rl m is unique (Lemma 1), we must have r1 m = p/q, consequently 
the (1, m)-osculant satisfies (2). The converse can be proved as follows. Suppose rl,m = 

po/qo; then the irreducibility of po/qo implies qo(xi) + 0 for i = 0, 1, . .. , j + 1. If 
rl m satisfies (2), then Lemma 3 implies that polqo is a solution of (1), or there exists 
an element in R(l, m) satisfying (1). 

From the proof of Theorem 1 we see that every element r in R(l, m) satisfying 
(1) must be equal to r1 m. Consequently, Lemma 1 and Theorem 1 imply the following 
result. 

THEOREM 2. If the osculatory rational interpolatioh problem (1) has a solution 
in R(l, m), then this solution is unique and equal to rl m. 

3. Osculatory Continued Fractions. The (1, m)-osculants of f, for different values 
of I and m, can be arranged in a scheme like Table 1. 

r0,0 ro0, r0,2 r0,3 * 

r1,0 r1,l r1,2 r1,3 . . 

r2,0 r2,1 r2,2 r2,3 ** 

TABLE I. Table of (1, m).osculant .f f 
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We assume that every element in Table 1 is a solution of the corresponding osculatory 
rational interpolation problem (1). As a corollary of Lemma 2, this condition holds, 
for example, in the case where the elements r1, m of Table 1 are regular, or 
min{l - l',Im'- m'} = O. 

In the remaining part of this paper, continued fractions of the following form will 
be considered 

c0 +cl (x-yO) + **+ Ck (X YO) *(X Yyk-1) 

Ck+1 (x -yo) . .. (x yk) Ck+2 *(x Yk+1) 
(4) 1 1 

Ck+3 (X Yk+2) 

+l 1+ 

where the points yi for i > 0 are defined by (3). Let Tk be a set of elements lying on 
a staircase in Table 1, or Tk = {rk,O, rk+l , rk+ 1 rk+2,1, - - .1 for k > 0. We will 
show that the coefficients ci for i > 0 in (4) can be defined in such a way that the con- 
vergents of (4) are the elements of Tk. First we prove a relationship between certain 
elements in Table 1. 

LEMMA 4. Let v(x) = (x-yo) - (x-Y 1) * (x-Yi+m),rim P 1p/q1 and 

rl+ i,m+v = P2/q2 with gt, v > 0. There exists a polynomial w of degree at most 
max{g-1, V-1} such that p1 * q2 -P2 * q, = v* w. 

Proof Let jand tbe suchthat I +m = Vi-o s + t -1 and 1 t<s,+ 
Since we assumed that ri m and rl+ ,m+v are solutions of (1), we get that p1/qq and 

P2/q2 are solutions of (2) by applying Lemma 3. The relation p1 - q2 - P2 * q= 

(p1 -f ql) *q2 (P2 - f * q2) * q1 then implies 

(P1 * q2 -P2 * ql )(k)(Xi) = 0 for k = 0, 1,.. ,s-1 and i= 0, 1,... 

(p1 q2-p2 q1)(k)(xj+1)=0 fork=0,1,...,t-1. 
Consequently, there exists a polynomial w such that p1 *q2 - P2 q = v w. Since 
the degree of p1 - q2 - P2 * q1 is at most 1 + m + max{,, v}, we get that the degree 
of w can be at most max{, - 1, v - 1}. 

THEOREM 3. If the elements of Tk are different from each other, then there 
exists a continued fraction of the form (4), with ck+i 0 0 for i > 1 whose convergents 
are the elements of Tk. 

Proof. Let rk+i,i = pi+1/qi+ for i = j, j + 1 and j = 0, 1, 2, .... We construct 
a continued fraction of the form 

(5) go + 

f+3+ 

3 

whose nth convergent is equal to Pn/q, for n > 0. This means that go and ai, Pi for 
i > 0 have to satisfy the relations 

o0 Po' go0 1P + t1= P1 O, 1=q1, 

(6) On Pn-1 +a n Pn -2 =pPn 
for n > 2. 
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Consequently go = Po, ol = 1 and a1, = p1 - p0. These equations and the definitions 
of po and p1 imply the existence of coefficients co, cl,... , Ck+ 1 such that 

0 =cO + cl (x -Yo) + . . . + ck * (x-yO) ...(x-Yk-1) and 

Oi l =Ck+l 
* (X -YO ) ... (X -Yk ) 

Since rk,O 0 rk+ 10 we get p1 p0; consequently, Ck+1 0.- Using (6) and Lemma 4, 
we get the existence of nonzero constants an, bn such that 

anc=anf X-Yk+nl1) and On=bn forn>2. 

By using an equivalence transformation, the continued fraction (5) can be reduced to a 
continued fraction of the form (4) with Ck+i 1 0 for i > 1. This concludes the proof. 

The elements of Tk for k > 0 form the lower triangular part of Table 1. A 
theorem, similar to Theorem 3, can also be given about the existence of continued frac- 
tions whose convergents form a staircase {rO,k, rO,k+ I, rl,k+ 1, rl,k+2, r2,k+2 *...*} in 
the upper triangular part of Table 1. 

4. The Computation of Osculating Rational Functions. In order to compute an 
element rl m in Table 1, several methods are already available. In most cases, a sequence 
Tk is constructed until rl, m is reached, where the value of k must be chosen in such a 
way that rl m is one of the elements of Tk. 

Methods to compute To are given by Thiele [2] and Salzer [3]. In Thiele's 
method, reciprocal differences with confluent arguments are used, while Salzer's method 
gives a more direct approach avoiding confluent reciprocal differences. To compute Tk 
for k > 0, methods of Thacher [5] and Kahng [1] are available. Thacher's method is 
based on the use of recurrence relations between the numerators and denominators of 
consecutive elements in Tk. In Kahng's method, a certain type of divided differences 
is used. 

We will now describe an algorithm to compute the lower half of Table 1, by using 
certain relations between the sequences Tk and Tk+ 1. A similar method can be given 
to construct the upper half of this table. Consider the following continued fraction gk 
for k > 0: 

gk(X) = Co + Cl *(X- YO) + ***+ Ck *(X -YO) ... (X Yk- 1) 

?Ck+ 1(X-YO) **(X-Yk)_ ql *(XYk+ 1) 

(7) 1 1 
ek+ 1 1q2 ( 
I 1X Yk2) 2 **Xyk 

If the elements of Tk are different from each other, then it follows from Theorem 3 
that the coefficients in gk can be defined in such a way that the nth convergent gk,n 
of gk is equal to the nth element of Tk. Using contraction [4, p. 389], it is possible to 
obtain a continued fraction hk whose convergents hkfn satisfy the relation hk,n = 

gk,2n + 1 for n > 0. If we also consider gk + 1 then hk + l can be defined such that 
hk+ 1 n = gk+ 1 ,2n for n > 0. It is clear that the convergents of hk and hk+ 1 represent the 
same rational functions, namely, rk+ 1O,0 rk+2 1, rk+ 32, ... for k > 0. By identifying 
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the corresponding coefficients in hk and hk+ 1, after normalizing, we get the following 
relations for k > 1: 

qk Ik Ck+ ek qk+ qk 

and for i > 2: 

dk_ +1 ek+l1 d __ 

() qi d qi e1 J e1 = [e' 1' + q;1i - q'. (9) ql dk q ek ]' i dk [, f ]q 

The normalizing constants dk satisfy the following relations for k > 1: 

dk I dk I + Ck+ 1 
(10) d0=1 dk =1+ _ Yk+1 YkI' 

Ck 

(11) d, = df_ I [1 + ezk,ek+1 dk2 *eZk,i *jjq-Il * k-] 

with zk,i = Yk+2i-2 Yk+2i-1 for i > 2. 

The elements rk,O for k > 0 in the first column of Table 1 are osculating polynomials. 
This means that cO, cl, c2,I . .. can be computed by using divided differences with con- 

fluent arguments [4, p. 246]. In order to use the algorithm, a scheme of the form 

given in Table 2 can be constructed. 

d' q 

1 

d2 q2 d' q1 
22 

e2l e1 1 2~~~~~~~~ 

d3 q3 d2 q2 d' q1 

e3 e2 eI 2 1 

TABLE 2. Table of coefficients used in the algorithm 

It is convenient to define the elements e = 0 for k > 1, since in this case the formula 
(9) for ek can also be applied for i = 1. The first and second columns in Table 2 can 
be computed by means of (10) and (8). In order to compute the other columns, the 
formulas (9) and (11) can be used. The above algorithm is now illustrated in a simple 

example. 
Example 2. Let x = 0, x = 1, s = s = 2 and fJO0) = 1, f(l) = f (?) = 2, 

ftl) = 3. Using divided differences with confluent arguments, we get c0 = 1, cl = 2, 

c2 = -1 and c3 = 3. The corresponding elements in Table 2 are dl = X, ql = -1, 
a= 1, q= -3, el = -5. Using these coefficients, we can form the osculating con- 
tinued fractions (7) whose convergents are the (1, m)-osculants of f We get 
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r = 1, 

1 + 3 x 
rl 1 + 2 * x, rl 
r1,0=12x 1,1 1?X 

r 0 1 +2 x-x2, r2,0-1 2 x 

r30= 1 + 2 *x - 4x2 + 3x3, r21 (5 x2 - x - 2)/3 3,0 9 2,1 ~~~x -2/3 

5. Special Cases. In the case of ordinary rational interpolation s1 = 1 for i = 0, 1 

2, .... The corresponding theory and algorithm for this situation is given in [6] and [7] 

In the case of Pade' approximation, Yj = x0 for i > 0, The relations (10) and (11) 
imply dk = 1 for all i > 0 and k > 1. The algorithm described by (8) and (9) is then 
identical with the qd-algorithm [4, p. 402]. 
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